Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens.
نویسندگان
چکیده
A collection of 76 plant-pathogenic and 41 saprophytic Fusarium oxysporum strains was screened for sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum antibiotic produced by multiple strains of antagonistic Pseudomonas fluorescens. Approximately 17% of the F. oxysporum strains were relatively tolerant to high 2,4-DAPG concentrations. Tolerance to 2,4-DAPG did not correlate with the geographic origin of the strains, formae speciales, intergenic spacer (IGS) group, or fusaric acid production levels. Biochemical analysis showed that 18 of 20 tolerant F. oxysporum strains were capable of metabolizing 2,4-DAPG. For two tolerant strains, analysis by mass spectrometry indicated that deacetylation of 2,4-DAPG to the less fungitoxic derivatives monoacetylphloroglucinol and phloroglucinol is among the initial mechanisms of 2,4-DAPG degradation. Production of fusaric acid, a known inhibitor of 2,4-DAPG biosynthesis in P. fluorescens, differed considerably among both 2,4-DAPG-sensitive and -tolerant F. oxysporum strains, indicating that fusaric acid production may be as important for 2,4-DAPG-sensitive as for -tolerant F. oxysporum strains. Whether 2,4-DAPG triggers fusaric acid production was studied for six F. oxysporum strains; 2,4-DAPG had no significant effect on fusaric acid production in four strains. In two strains, however, sublethal concentrations of 2,4-DAPG either enhanced or significantly decreased fusaric acid production. The implications of 2,4-DAPG degradation, the distribution of this trait within F. oxysporum and other plant-pathogenic fungi, and the consequences for the efficacy of biological control are discussed.
منابع مشابه
Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici.
The antifungal compound 2,4-diacetylphloroglucinol-producing bacterium, Pseudomonas fluorescens strain LRB3W1, inhibits the growth of Fusarium oxysporum f. sp. lycopersici, and controls Fusarium wilt of tomato caused by F. oxysporum f. sp. lycopersici. On the other hand, Serratia marcescens strain B2, which produces cell wall-degrading enzyme chitinases, did not inhibit fungal growth and the su...
متن کاملPositive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5.
Pseudomonas fluorescens Pf-5, a rhizosphere bacterium, produces a suite of secondary metabolites that are toxic to seed- and root-rotting plant pathogens. Among these are the polyketide compounds pyoluteorin and 2,4-diacetylphloroglucinol. We provide evidence that pyoluteorin production is influenced by positive autoregulation. Addition of pyoluteorin to liquid cultures of Pf-5 enhanced pyolute...
متن کاملQuantification of 2,4-Diacetylphloroglucinol Produced by Fluorescent Pseudomonas spp. In Vitro and in the Rhizosphere of Wheat.
The broad-spectrum antibiotic 2,4-diacetylphloroglucinol (Phl) is a major determinant in the biological control of a wide range of plant diseases by fluorescent Pseudomonas spp. A protocol was developed to readily isolate and quantify Phl from broth and agar cultures and from the rhizosphere environment of plants. Extraction with ethyl acetate at an acidic pH was suitable for both in vitro and ...
متن کاملInduced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens.
Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts, and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of some soils to certain soilborne pathogens. Root colonization by 2,4-DAPG-producing P. fluorescen...
متن کاملIdentification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87.
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2004